ALJABAR BOOLE
(Dualitas Persamaan Boole)
A
+ B = B + A
|
Gerbang
Logika
Tabel Kebenaran
A
|
B
|
A
+ B
|
B
+ A
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
A
+ ( B + C ) = (A + B) +C
|
Gerbang
Logika
Tabel
Kebenaran
A
|
B
|
C
|
A
+ B
|
B
+ C
|
A
+ ( B+C )
|
(A+B)
+ C
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
A
( B + C ) = AB +AC
|
Gerbang
Logika
Tabel
Kebenaran
A
|
B
|
C
|
B
+ C
|
AB
|
AC
|
A(B
+ C)
|
AB
+ AC
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
A
+ 0 = A
|
Tabel
Kebenaran
A
|
0
|
A
+ 0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
A
+ 1 = 1
|
Tabel
Kebenaran
A
|
1
|
A
+ 1
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
A
+ A = A
|
Tabel
Kebenaran
A
|
A
|
A + A
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
A
+ A’ = 1
|
Gerbang
Logika
Tabel
Kebenaran
A
|
A’
|
1
|
A
+ A’
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
A’ + B’ = A’ . B’
|
Gerbang
Logika
Tabel
Kebenaran
A
|
B
|
A + B
|
A’+ B’
|
A . B
|
A’.B’
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
A + AB = A
|
Gerbang
Logika
Tabel
Kebenaran
A
|
A’
|
1
|
A
+ A’
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
A + A’ B = A + B
|
Gerbang
Logika
Tabel
Kebenaran
A
|
A’
|
B
|
A’
B
|
A
+ A’ B
|
A
+ B
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
A . B = B . A
Gerbang Logika
Tabel Kebenaran
A
|
B
|
A
. B
|
B
. A
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
A (BC) = (AB) C
Gerbang Logika
Tabel Kebenaran
A
|
B
|
C
|
AB
|
BC
|
A(BC)
|
(AB)C
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
A + (BC) = (A+B).(A+ C)
Gerbang Logika
Tabel Kebenaran
A
|
B
|
C
|
BC
|
A+B
|
A+C
|
A + (BC)
|
(A+B).(A+
C)
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
A . 1 = A
Tabel Kebenaran
A
|
1
|
A
. 1
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
Tabel Kebenaran
A
|
0
|
A
. 0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
A . A = A
Tabel Kebenaran
A
|
A
|
A
. A
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
A . Ā = 0
Gerbang Logika
Tabel Kebenaran
A
|
A’
|
1
|
A
. A’
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
A’ . B’ = A’ + B’
Gerbang Logika
Tabel Kebenaran
A
|
B
|
A
. B
|
A
+ B
|
A’
. B’
|
A’
+ B’
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
A . (A + B) = A
Gerbang Logika
Tabel Kebenaran
A
|
B
|
A
+ B
|
A
. (A + B)
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
A.(A’ + B) = AB
Gerbang Logika
Tabel Kebenaran
A
|
A’
|
B
|
A’
+ B
|
A.(A’
+ B)
|
A
. B
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|